Eliminating spurious velocities with a stable approximation of incompressible two-phase flow

نویسندگان

  • John W. Barrett
  • Harald Garcke
  • Robert Nürnberg
چکیده

We present a parametric finite element approximation of two-phase flow. This free boundary problem is given by the Stokes equations in the two phases, which are coupled via jump conditions across the interface. Using a novel variational formulation for the interface evolution gives rise to a natural discretization of the mean curvature of the interface. In addition, the mesh quality of the parametric approximation of the interface does not deteriorate, in general, over time; and an equidistribution property can be shown for a semidiscrete continuous-in-time variant of our scheme in two space dimensions. Moreover, on using a simple XFEM pressure space enrichment, we obtain exact volume conservation for the two phase regions. Furthermore, our fully discrete finite element approximation can be shown to be unconditionally stable. We demonstrate the applicability of our method with some numerical results which, in particular, demonstrate that spurious velocities can be avoided in the classical test cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An extended pressure finite element space for two-phase incompressible flows with surface tension

We consider a standard model for incompressible two-phase flows in which a localized force at the interface describes the effect of surface tension. If a level set (or VOF) method is applied then the interface, which is implicitly given by the zero level of the level set function, is in general not aligned with the triangulation that is used in the discretization of the flow problem. This non-a...

متن کامل

A Numerical Study of Flow and Heat Transfer Between Two Rotating Vertically Eccentric Spheres with Time- Dependent Angular Velocities

The transient motion and the heat transfer of a viscous incompressible flow contained between two vertically eccentric spheres maintained at different temperatures and rotating about a common axis with different angular velocities is numerically considered when the angular velocities are an arbitrary functions of time. The resulting flow pattern, temperature distribution, and heat transfer char...

متن کامل

An adaptive pressure correction method without spurious velocities for diffuse-interface models of incompressible flows

In this article, we propose to study two issues associated with the use of the incremental projection method for solving the incompressible Navier-Stokes equation. The first one is the combination of this time splitting algorithm with an adaptive local refinement method. The second one is the reduction of spurious velocities due to the right-hand side of the momentum balance. We propose a new v...

متن کامل

Analysis of an Extended Pressure Finite Element Space for Two-phase Incompressible Flows

We consider a standard model for incompressible two-phase flows in which a localized force at the interface describes the effect of surface tension. If a level set (or VOF) method is applied then the interface, which is implicitly given by the zero level of the level set function, is in general not aligned with the triangulation that is used in the discretization of the flow problem. This nonal...

متن کامل

Energy Stable Schemes for Cahn-Hilliard Phase-Field Model of Two-Phase Incompressible Flows∗∗∗

Numerical approximations of Cahn-Hilliard phase-field model for the two-phase incompressible flows are considered in this paper. Several efficient and energy stable time discretization schemes for the coupled nonlinear Cahn-Hilliard phase-field system for both the matched density case and the variable density case are constructed, and are shown to satisfy discrete energy laws which are analogou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013